Higher-Level Features in Speaker Recognition
نویسنده
چکیده
Higher-level features based on linguistic or long-range information have attracted significant attention in automatic speaker recognition. This article briefly summarizes approaches to using higher-level features for text-independent speaker verification over the last decade. To clarify how each approach uses higher-level information, features are described in terms of their type, temporal span, and reliance on automatic speech recognition for both feature extraction and feature conditioning. A subsequent analysis of higher-level features in a state-of-the-art system illustrates that (1) a higher-level cepstral system outperforms standard systems, (2) a prosodic system shows excellent performance individually and in combination, (3) other higher-level systems provide further gains, and (4) higher-level systems provide increasing relative gains as training data increases. Implications for the general field of speaker classification are discussed.
منابع مشابه
The case for automatic higher-level features in forensic speaker recognition
Approaches from standard automatic speaker recognition, which rely on cepstral features, suffer the problem of lack of interpretability for forensic applications. But the growing practice of using “higher-level” features in automatic systems offers promise in this regard. We provide an overview of automatic higher-level systems and discuss potential advantages, as well as issues, for their use ...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملSpeech Recognition as Feature Extraction for Speaker Recognition
Information from speech recognition can be used in various ways in state-of-the-art speaker recognition systems. This includes the obvious use of recognized words to enable the use of text-dependent speaker modeling techniques when the words spoken are not given. Furthermore, it has been shown that the choice of words and phones itself can be a useful indicator of speaker identity. Also, recogn...
متن کاملEffects of audio and ASR quality on cepstral and high-level speaker verification systems
Speech data for NIST speaker recognition evaluations has traditionally been distributed in compressed, telephone quality form, even for microphone data that was originally recorded at higher quality. We evaluate the effect that improved audio quality has for speaker verification performance, using a recently released full-bandwidth version of microphone data from the SRE2010 evaluation. Remarka...
متن کاملThe effectiveness of higher order spectral phase features in speaker identification
This paper studies the effectiveness of higher order spectra (HOS) phase features in the task of speaker identification. Within the speech processing community, short time spectral phase information is generally regarded as unimportant for speaker recognition. In fact, the most commonly used features for speaker recognition are the Mel frequency cepstral coefficients (MFCC), which are defined f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007